RATIONAL ENDOMORPHISMS ON FANO HYPERSURFACES

Nathan Chen

joint work with David Stapleton

◊ Zoom Birational Geometry Seminar ◊

Maps

Given an arbitrary smooth projective variety X, what sort of morphisms can one write down?

$$\mathsf{id}:X o X$$

 $X o \mathsf{pt.}$

Ex. $X \subset \mathbb{P}^N \implies \exists X \to \mathbb{P}^n$ of every dimension $n \ge \dim X$. **Q:** What about other *rational* maps?

Rational self-maps

Suppose X is *unirational* of dimension *n*:

```
\exists dominant map \mathbb{P}^n \dashrightarrow X.
```

Then we can precompose to get a rational self-map

$$X \dashrightarrow \mathbb{P}^n \dashrightarrow X.$$

This gives many elements in the set

$$\mathsf{RatEnd}(X) = \{\mathsf{dominant} \ X \dashrightarrow X\} \supset \mathsf{Bir}(X)$$
$$\bigcup_{\mathbb{Z}}^{\mathsf{deg}}$$

Longstanding open problem: does there exist a smooth rationally connected variety which is not unirational?

Observation: if X does NOT admit any $\phi \in \text{RatEnd}(X)$ with deg $\phi \ge 2$, then X is not unirational!

Q. What sort of varieties admit rational endomorphisms?

 ${\bf Q}.$ Obstructions to the existence of

 $\varphi \in \mathsf{RatEnd}(X)$

with deg(ϕ) \geq 2?

Examples

Ex. \mathbb{P}^1 has lots of rational endomorphisms of all possible degrees.

Ex. Let E = elliptic curve.

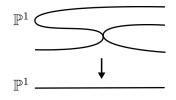
 $End(E) = \mathbb{Z}$: up to translation have

$$\varphi_k \colon E \xrightarrow{\cdot k} E \implies \deg \phi_k = k^2$$

 $\operatorname{End}(E) = \mathbb{Z}[i]$. Then $a + bi \in \mathbb{Z}[i]$ corresponds to

 $\operatorname{End}(E) \ni \phi_{(a+bi)} \colon E \to E \text{ of degree } a^2 + b^2.$

Fact: If C is a curve of genus $g \ge 2$, then RatEnd(C) = Aut(C).



Higher dimensions

Rational (or even ruled) varieties admit rational endomorphisms of every degree.

Abelian surfaces: depends on End(A).

Q. Let S be a K3 surface with $Pic(S) = \mathbb{Z}$. Does S admit rational self-maps of degree ≥ 2 ?

Partial work by Dedieu for K3s: any such map must have degree equal to a perfect square k².

Theorem (Kobayashi-Ochiai)

If X is a general type variety, then Bir(X) = RatEnd(X).

Main result

$$X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}}$$

a (very general) smooth hypersurface of dimension n and degree d.

Focus on degree $d \le n+2$ (Fano and Calabi-Yau range).

Today: Finding obstructions to the existence of rational maps of certain degrees using specialization to char *p* techniques.

Theorem (C-Stapleton)

 $X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ very general, $n \geq 3$. Let p be a prime number such that

$$d \ge p\left\lceil \frac{n+3}{p+1}
ight
ceil.$$

If $\phi \in \mathsf{RatEnd}(X)$ has degree λ , then $\lambda \equiv 0$ or 1 (mod p).

Graph

Beheshti-Riedl: For a fixed degree d, hypersurfaces X_d of large enough dimension are unirational. So these will have lots of rational endomorphisms.

Analogy:

Fano hypersurfaces of large degree behave very differently from those of small degree.

Rationality of Fano hypersurfaces

Starting point: $X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ very general hypersurface.

Theorem (Kollár; 1995)

If $d \ge 2 \cdot \lceil (n+3)/2 \rceil$ then X is not ruled (in particular not rational).

This was generalized and improved by Totaro and subsequently by Schreieder.

Mori's degeneration

Let R be a DVR with residue field κ and fraction field $\eta.$ There is a family

$$\mathcal{X} o T := \operatorname{Spec} R$$

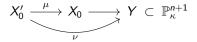
of weighted complete intersections such that

 $\begin{array}{ll} X_\eta \subset \mathbb{P}_\eta^{n+1}: & \text{hypersurface of degree pe;} \\ X_0: & \text{degree p cyclic cover of a} \\ & \text{smooth degree e hypersurface $Y \subset \mathbb{P}_\kappa^{n+1}$.} \end{array}$

Special behavior: when R is a mixed char p > 0 DVR!

Kollár's argument

There is a resolution of the special fiber



Assuming $n \geq 3$, Kollár shows that

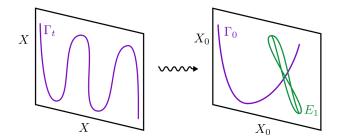
$$\underset{\text{big \& nef}}{\mathcal{M}} \hookrightarrow \wedge^{n-1}\Omega_{X_0'} \quad \text{and} \quad H^0(\wedge^{n-1}\Omega_{X_0'}) \neq 0.$$

- In char p > 0, these special Fano hypersurfaces X₀ carry forms which have some additional positivity, hence X₀ not ruled.
- Ruledness specializes well, so when we lift to characteristic 0, we get hypersurfaces that are not ruled.

Sketch of main result

We will use Mori's construction.

Step 1. Start with $\phi_t \in \text{RatEnd}(X_t) \iff \Gamma_t \subset X_t \times X_t$. Degenerate to positive characteristic:

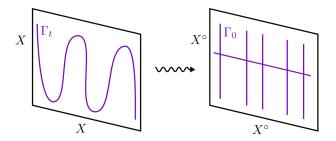


The graph on the central fiber possibly breaks up into a union of components

 $\Gamma_0 \cup E_1 \cup \cdots \cup E_n$.

In practice, it is possible for graphs to break terribly:

Consider a family of maps $\mathbb{P}^1 \to \mathbb{P}^1$ of degree d which degenerates into a union of vertical fibers and one horizontal fibers.



This sort of degenerate behavior is special to \mathbb{P}^1 (and ruled varieties).

Singularities

 X_R = normal scheme over R = DVR.

Definition. X_R has sustained ruled modifications if for every finite extension of DVRs $R \subset R'$, there is a further finite extension $R' \subset R''$ such that $X_{R''}$ is a normal scheme with ruled modifications.

Ex. (Abhyankar) A regular scheme X admits admits ruled modifications.¹ This can be checked locally - suffices to find a proper birational map $\bar{X} \to X$ from a regular scheme...

Relevance:

Given a family X_R, this will allow us to specialize properties from the geometric generic fiber X_η to the special fiber X₀.

¹Ruled modifications: every exceptional divisor of every normal birational modification $Y \rightarrow X$ is ruled.

Recall: The graph on the central fiber possibly breaks up into a union of components

 $\Gamma_0 \cup E_1 \cup \cdots \cup E_n \subset X_0 \times X_0.$

Theorem (Kollár)

 X_0 is not separably uniruled.

Step 2. Technical part: give a partial resolution of cyclic covers in mixed characteristic. After allowing **arbitrary** base change, we can show:

Prop: All exceptional divisors E_i are separably uniruled.

$$\implies \deg \left(\pi_2 \Big|_{E_i} \colon E_i \dashrightarrow X_0 \right) \equiv 0 \pmod{p}.$$

Note: We do not give a resolution of Mori's family. Let $R = \mathbb{Z}_p^{sh}$.

Let $X_R \rightarrow Y_R$ be the *p*-cyclic cover branched over *D*. This like the central fiber in Mori's family but in mixed characteristic.

Theorem. X_R has sustained separably uniruled modifications.

The proof involves a few types of weighted blow-ups. We find a birational model of X_R which has cyclic quotient singularities by groups of small order.

$$X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}} \ \stackrel{\leadsto}{\longrightarrow} \ X_0 o Y_0 \subset \mathbb{P}^{n+1}_{\mathbb{C}} \ \leadsto \ X_{\overline{\mathbb{F}}_p} o Y_{\overline{\mathbb{F}}_p} \subset \mathbb{P}^{n+1}_{\overline{\mathbb{F}}_p}.$$

Step 3. Find an obstruction to separable rational endomorphisms on central fiber.

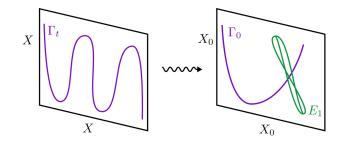
Let Z be a \mathbb{Q} -factorial variety.

Proposition. Suppose $M \hookrightarrow \bigwedge^{i} \Omega_{Z}$ (i > 0) is a big and nef line bundle. Then any separable rational endomorphism $\phi: Z \dashrightarrow Z$ has degree 0 or 1. Consequence:

> X_0 does not admit separable rational endomorphisms of degree ≥ 2 . Idea: recall

$$\underbrace{\mathcal{L}}_{\operatorname{big} + \operatorname{nef}} \hookrightarrow \wedge^{n-1} \Omega_{X_0}.$$

Iterate $\phi \in \mathsf{RatEnd}(X)$ and pull back L under $\phi^{\circ k}$ to produce an arbitrarily positive line bundle inside $\wedge^{n-1}\Omega_{X_0}$, contradiction.



Theorem (C-Stapleton)

 $X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ very general, $n \geq 3$. Let p be a prime number such that

$$d \ge p\left[\frac{n+3}{p+1}\right]$$

If $\phi \in \mathsf{RatEnd}(X)$ has degree λ , then $\lambda \equiv 0$ or $1 \pmod{p}$.

Related work

Observe: elliptic fibrations (with a section) always have multiplication by n maps. This gives a rational endomorphism of degree n^2 .

Fact: if $n^2 \equiv 0$ or 1 (mod p) for all $n \ge 2 \implies p = 2, 3$.

Corollary

 $X \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ very general. If $d \ge 5 \lceil (n+3)/6 \rceil$, then $X \not\simeq_{bir.}$ to an elliptic fibration.

This is similar in spirit to:

Theorem (Kollár). $X_d \subset \mathbb{P}^{n+1}_{\mathbb{C}}$ very general. If $d \geq 3\lceil (n+3)/4 \rceil$, then $X \not\simeq_{\text{bir.}}$ conic bundle.

For CY hypersurfaces, Grassi and Wen proved an even stronger statement: they do not admit genus 1 fibrations. Thank you for listening!